
Text Analysis with Large Language Models
An Introduction and Best-Practice Guide

Violeta Haas
violeta.haas@iast.fr
29th January 2025

Postdoctoral Research Fellow
Institute for Advanced Study in Toulouse
Toulouse School of Economics
University of Toulouse Capitole



Introduction



Hi

About myself:
• Violeta Haas
• Research Fellow at IAST and TSE
• BA, MA & PhD at HU and DYNAMICS

Research Interests:
Comparative politics and political beha-
vior: how institutions and elites shape
public perceptions and inter-group rela-
tions, with a special focus on sexuality
and gender. I also study electoral beha-
vior, party competition, social norms and
movements.

1



Objectives

What we’ll cover today:

• Short introduction to Large Language Models (LLMs).
• Step-by-Step Guide for text analysis with LLMs.

• Model Selection
• Prompt Engeneering and Parameter Tuning
• Prompt Validation
• Model Evaluation

• Applied example using GPT API.
• (How to avoid the next Replication Crisis)

Goal: Introduction and best-practice guide for text analysis with LLMs

Interactive: Feel free to ask questions throughout!

2



Two Disclaimers

1. Introductory Session:

• This is an introductory session—we will only cover the basics.
• Advanced topics like fine-tuning and detailed parameter
adjustments are beyond today’s scope (but see ”Appendix”).

2. Rapidly Evolving Field:

• LLMs are a rapidly evolving field.
• Best-practice advice is often a work in progress.
• What is true today may change tomorrow as new techniques and
models emerge.

3



Why Use LLMs for Text Analysis?

What are LLMs?

• Deep learning models trained on massive text corpora to
understand and perform human-like behavior.

• Built using transformer architectures consisting of neural
networks with many layers (hence ”deep” learning).
Examples: GPT, BERT, LLaMa and their variants.

4



Why Use LLMs for Text Analysis?

Applications in Social Sciences:

• Label topics and frames of documents (e.g., Gilardi et al., 2023)
• Analyzing open-ended responses (e.g., Mellon et al., 2024)
• Act as treatments in experiments (e.g., Argyle et al., 2023)
• Generate data by simulating respondents (e.g., Argyle et al., 2023)

→ Not uncontested (Bisbee et al., 2024, Dominguez-Olmedo et al., 2023, von
der Heyde et al., 2024)

LLMs have outperformed humans across a variety of classification
and annotation tasks for a fraction of the cost (Bang et al., 2023, Qin et al.,
2023, Goyal et al., 2022, Chiang and Lee, 2023, Grossmann et al., 2023, Ziems et al., 2024).

5



Why Use LLMs for Text Analysis

Ease-of-use, high accuracy and relatively low costs!

6



Step-By-Step Guide: Text Analysis with LLMs

1. Model Selection
2. Prompt Engineering and Parameter Tuning
3. Prompt Validation
4. Model Evaluation

7



Model Selection: Proprietary vs. Open-Source Models

Two Catgories of LLMs:

• Propriatary: LLMs developed and maintained by private entities
with exclusive rights to the model’s code, data, and usage.

• Open-Source: LLMs whose code, architecture, and sometimes
training data are publicly accessible.

Proprietary LLMs Open-Source LLMs

Ownership Retained by company Community or developers

Access Paid or restricted Free or low-cost

Transparency Limited Full

Customization Limited High

Examples GPT LLaMA

8



Model Selection: Proprietary Models

Challenges with Proprietary Models:

• Privacy concerns: Commercial APIs require sending data to
service providers, who may use it for training.

• Lack of transparency: Training data and methodologies are
unknown, potentially leading to bias.

• Unpredictable updates: Models can change over time without
notice or depreciate, altering results and making replication
impossible.

9



Model Selection: Open-Source Models

Challenges of Open-Source Models:

• Performance Gaps: May not match proprietary models’
performance, especially for complex tasks.

• Scalability Challenges: Often not optimized for large-scale
deployment.

• Setup Costs: May require access to powerful hardware and more
expertise in machine learning and model optimization.

10



Model Selection: Self-Hosting

Why host models on your own infrastructure?

• Control over model version and updates without relying on
external services (improves reproducibility).

• Ensures sensitive or confidential information is handled
securely without exposing it to third-party APIs.

11



Model Selection: ”Open-Washing”

Not all downloadable models are open-source models!

Benchmarks for openness (Liesenfeld et al., 2023)
Link to Github

12

https://opening-up-chatgpt.github.io/


Model Selection: Open LLM Leaderboard

Tracks carbon dioxide emission!

Link to Hugging Face

13

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/


Model Selection

6 Factors to consider (Part 1):

1. Reproducibility: Ensure results can be replicated by
documenting and using a fixed LLM version.

2. Ethics and legality: Adhere to ethical and legal standards,
respecting privacy and data regulations (e.g., not storing
research data).

3. Transparency: Clearly document methodologies, assumptions,
and limitations.

14



Model Selection

6 Factors to consider (Part 2):

4. Culture and language: Select models proficient in relevant
languages and cultural contexts to avoid bias.

5. Scalability: Match the model to data size and resource
constraints; consider semi-supervised options for large datasets.

6. Complexity: Use sophisticated models (e.g., GPT-4) for tasks
requiring advanced reasoning or subtle meaning parsing.

→ Simple decision tree in ”Appendix”

15



Model Choice

Best Practice:

→ Use self-hosted, open-source models with publicly known
training data.

→ But, trade-offs between factors 1-3 and 4-6 can complicate use
of open-source models.

→ Always offer motivations for model choice.

The best model ultimately depends on the task at hand!

16



The Least One Can Do...

Never use proprietary models with sensitive, secret, or private data! 17



Prompt Engineering and
Parameter Tuning



Workflow: Systematic Coding Procedure

Source: Törnberg (2024)
18



Prompt Engineering

What is Prompt Engineering?

• Designing effective instructions (inputs) to guide LLM behavior.
• Requires multiple iterations of modification and testing.
• Poor theor. understanding of why some techniques work better.

A good prompt contains these five elements (in this order):

1. Context
2. Question/Instruction
3. Constraints
4. (Examples)
5. Input data

19



1. Context

Include background information:

• Add context that helps the model ”understand” its role and the
domain of the input data.

Example: Context

You are an expert annotator for natural language processing tasks
focusing on social media content analysis. Your role involves fact-
checking Twitter messages related to the US 2020 election.

20



2. Question/Instruction

Start with a simple Question/Instruction

• Define Concepts and Tasks
• Use direct and instructional language.

Example: Instruction

Your expertise is critical in identifying misinformation that shares
false or misleading content, which can distort facts, omit critical con-
text, or misrepresent the truth. For each Twitter message, assess
whether it contains misinformation regarding the US 2020 election by
evaluating the factual accuracy of claims, sources, and context. Does
this message contain misinformation?

21



2. Question/Instruction

Adapt specificity based on performance:

• Provide additional guidelines

Example: Additional Guidelines

Verify statements against reputable and publicly available sources like
government websites, credible news outlets, and fact-checking organ-
izations.

• Provide specific instructions where the model fails

Example: Failure Adaptation

Look for signs of altered or fabricated images, videos, or text like deep-
fakes, fake screenshots, or doctored evidence.

22



3. Constraints

Provide Categories and Constraints

• Give Classification Options
• Allow for Uncertainty

Example: Options

Options: Yes/No/Uncertain. If you are uncertain about the classifica-
tion, choose ‘Uncertain’ and provide a rationale for this uncertainty.

• Use JSON output format

Example: Output format

Provide your response in JSON format, as follows: { ”contains_misin-
formation”: ”Yes/No/Uncertain”, ”justification”: ”Provide a brief justi-
fication for your choice.” }

23



Prompt Engineering: 4. (Examples)

Zero-shot prompting might not always deliver good results!

Improve prompt using in-context learning techniques:

• Zero-shot prompting: instruction without examples.
• One-shot prompting: instruction + one example.
• Few-shot prompting: instruction + two or more examples.
• Negative prompting: instruction + example of unwanted output

*For an Example Structure of each technique see ”Appendix”

24



5. Input Data

Insert Input Data:

• One-by-one or grouping multiple queries (i.e., Batching)

Example: Input Data

Twitter message: [MESSAGE]

*For Batching see ”Appendix”

25



Parameter Tuning: Temperature

What is Temperature?

• Controls randomness in output.
• Range: 0 (deterministic) to 1 (creative and diverse).

• Low temperature (e.g., 0.0 or 0.2): Ensures consistency and
accuracy.

• High temperature (e.g., 0.8): Useful for subjective or exploratory
tasks.

→ Use low temperature for annotation tasks to ensure that similar
inputs produce similar outputs (consistency) and that the model
focuses on the most probable completion (accuracy).

*For other parameter settings, see section ”Advanced”

26



Additional Tips & Materials

→ Impolite prompts reduce performance, while overly polite ones
offer no guarantee of improvement.

→ optimal politeness varies by language/culture (Yin et al., 2024).
27



Additional Tips & Materials

Additional Tips for Prompting:

• Give an ”I don’t know” option.
• Break down tasks into several simpler intermediate steps.
• Use LLMs (like ChatGPT) to improve prompt language.
• Use affirmations (e.g., ”do” and ”don’t” or capitalize ”you MUST”).
• Use delimiters for structuring (e.g., ###Context###, ...).
• Request output in JSON format.
• Repeat important phrases multiple times.
• Avoid long prompts (i.e., balance brevity and specificity).

Some Additional Resources:

• Prompt Engineering Guide by DAIR.AI
• Prompt engineering by OpenAI
• Brex’s Prompt Engineering Guide

28

https://www.promptingguide.ai/
https://platform.openai.com/docs/guides/prompt-engineering
https://github.com/brexhq/prompt-engineering?tab=readme-ov-file


Two Common Problems

Hallucination:

• LLMs may generate incorrect or fabricated information,
potentially compromising the validity of results.

”Guardrails”:

• Models tuned to avoid controversy may refuse to annotate
certain topics, posing challenges for tasks involving
controversial content (e.g., radical political messages) or
sensitive annotations (e.g., identifying an author’s gender).

29



Prompt Validation



Prompt Validation

Validate your prompt before undertaking any model validation
steps, such as manually coding substantial amounts of data!

→ Prompt validation safes and

30



Prompt Validation

Asses Prompt Performance:

• Compare results against labeled data (i.e., small hand-coding
sample) using classic performance metrics.

• Identify patterns of errors:
• Does the output align with task expectations?
• Are similar inputs yielding similar outputs?
• Are the outputs unbiased and ethical?

31



Prompt Stability Analysis

LLMs can be very sensitive to trivial things like punctuation!

Calculate Stability Scores:

• Create several paraphrases of the prompt and run the analysis
on a subset of the data.

• Estimate stability by comparing results using measures like
Krippendorff’s Alpha.

→ Barrie et al. (2024) have released a package for prompt stability
scoring (Link to GitHub).

32

https://github.com/palaiole13/promptstability?tab=readme-ov-file


Model Evaluation



Model Evaluation

Must take place after prompt has been finalized!

How to evaluate LLM model outputs?

1. Label sufficient number of texts (min. 20–30 units per category)
• Use larger validation datasets for imbalanced categories or
high-stakes tasks

• Power analysis recommended

2. Compare model results to manual labels using multiple
performance metrics (e.g., Accuracy, F1 Score, Cohen’s Kappa)

• Validate across diverse subsets (e.g., languages, cultural contexts)

3. Examine and explain failures
• Asses downstream risks for later analysis.

33



Applied Example

33

https://colab.research.google.com/drive/1hAE0m3tLofPLLDM5y-LxX_pzPSw-UtTS#scrollTo=1d2RKaFYYPJO


Replication with LLMs



”Research tools are not merely passive
instruments, but active participants in research

procedures (Latour & Woolgar, 2013).”

33



Replication with LLMs

Exact replication is impossible with LLMs (same for hand-coding)!

Best Practice:

• Give motivation for model choice.
• Provide exact model version and parameter settings used.
• Save all versions and performance metrics of optimized
prompts.

• Share random sample of input/output pairs as additional
benchmarks.

• Store and share code/scripts for prompt automation.

34



References and More

Open Zotero Library: ”LLMs in Social Sciences”

35

https://www.zotero.org/groups/5834393/llms_in_social_sciences/library


End of session
Thank you!

*This presentation was designed with the help of ChatGPT

35



Appendix



Model Selection: Simple Decision Tree

Source: Weber and Reichardt (2024)

36



Advanced: Chain-of-Thought (CoT) Technique

What is CoT?

• A technique for improving reasoning and instruction-following
in LLMs.

• Breaks tasks into simpler intermediate steps to mimic human
problem-solving.

Why use CoT?

• Elicits step-by-step reasoning (Wei, Wang, et al., 2024).
• Enhances performance on complex tasks (Chung et al., 2024).
• Can be triggered with a prefix such as: ”Let’s think step by step.”

37



Other Parameters

Top-P/K:

• Focuses on diversity by setting a probability- or top-K most
probable tokens threshold for selecting tokens (requires
temperature > 0)

• Low Top-P/K (e.g., 0.2 to 0.4/ e.g., 5 or 10) ensures precision.
• High Top-P/K promotes diverse outputs but may reduce accuracy.

Max Tokens:

• Sets a limit on the length of the model’s response.
• Helps prevent overly lengthy or irrelevant outputs.

Best Practices:

• Start with low temperature for consistency.
• Adjust Top-P/K for controlled creativity.
• Use max tokens to prevent overly verbose responses.

*What exactly are Tokens? See Appendix
38



Advanced: Fine-Tuning

What is Fine-Tuning?

• Adapting a pre-trained model to specific tasks or domains using
additional data.

• Requires labeled datasets and computational resources.

When to Consider Fine-Tuning:

• Highly domain-specific tasks (e.g., medical or legal text).
• Need for custom outputs not achievable with prompt
engineering.

39



Advanced: Batching

What is Batching?

• Grouping multiple input queries together for simultaneous
processing.

• Reduces latency and improves throughput.
• Often used in high-volume workflows or API integrations.

Advantages of Batching:

• Efficiency: Minimizes overhead for repeated queries.
• Cost-Effectiveness: Lowers cost per request when using APIs.
• Consistency: Ensures uniform settings across similar tasks.

40



Example Structure for in-context learning techniques

Source: Weber and Reichardt (2024)

*Chain-of-Thought, see section ”Advanced”

41



Tokens

What are Tokens?

The atomic unit for language models is a token. Tokens resemble
syllables, with 750 words per 1,000 tokens, and include punctuation,
sentence boundaries, and document ends.

42


	Introduction
	Prompt Engineering and Parameter Tuning
	Prompt Validation
	Model Evaluation
	Replication with LLMs
	Appendix

